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Systems Health Management (SHM) is one of three basic functionalities that constitute 

an autonomous capability of a system.  The other two functionalities are Planning & 

Scheduling, and Task Execution.  In an autonomous system, variable autonomy is often 

distinct from variable authority to sense, decide, and act.  There are quantifiable Levels of 

Autonomy that can be achieved by tuning different portions of the Observe-Orient-Decide-

Act loop to provide flexibility and control.  This approach is tabulated for multiple domains 

such as spacecraft and aerial vehicles.  Examining SHM through a Systems Thinking lens 

helps us understand its stocks and flows, loops, and delays.  Systems thinking, and modeling, 

is a useful way to understand change and complexity of systems of many types. There are 

certain archetypes that underlie well-known autonomy architectures. And there often are 

leverage points – best places to intervene in a system – that can resolve or mitigate some 

fundamental challenges in the design and deployment of autonomous systems.  I identify 

these levers and present the ones that have been successfully used in NASA missions.  

I. Introduction 

N an autonomous system, tunable autonomy arises from combinations of varying degrees of capability, and 

authority, to sense, decide, and act. I propose, in Table 1, quantifiable Autonomy Levels that are achieved by 

tuning different portions of the Observe-Orient-Decide-Act loop.   

 These levels are based on the Autonomy Levels for Unmanned Systems (ALFUS) framework supported by the 

National Institute of Standards and Technology. ALFUS is a logical framework for characterizing autonomy for 

unmanned systems. It covers levels of autonomy, mission complexity, and environmental complexity. The 

Framework provides standard definitions, metrics, and process for the specification, evaluation, and development of 

the autonomous capabilities [6]. 

 

 

AL Descriptor Observe Orient Decide Act 

10 Full autonomy Aware of status of 
fleet-wide assets 

Autonomous fleet-
wide awareness 

Autonomous fleet 
coordination 

Group 
accomplishes all 
goals 

9 Swarm 
cognizance 

Sensors and models 
to infer intent of 
other vehicles 

Strategic group 
goals assigned, 
infers other vehicle 
intent 

Distributed tactical 
group planning, 
individual goal 
determination 

Group 
accomplishes 
strategic goals 
without assistance 

8 Space 
environment 
knowledge 

Proximity inference, 
reduced 
dependence on off-
board data 

Strategic group 
goals assigned 

Coordinated, tactical 
team planning, 
individual task 
planning 

Group 
accomplishes 
tactical goals with 
minimal operator 
assistance 
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7 Space 
environment 
sensing 

Short-track 
awareness, limited 
inference plus off-
board data 

Tactical group 
goals assigned, 
estimates other 
vehicle trajectory  

Individual task 
planning and 
execution 

Accomplishes 
tactical goal with 
ground monitoring 

6 Multi-vehicle 
cooperation 

Range awareness, 
communication with 
other vehicles 

Tactical group 
goals assigned, 
estimates other 
vehicle location 

Coordinated 
trajectory planning 
and execution 

Maintains close 
levels of separation 

5 Multi-vehicle 
coordination 

Local sensors to 
detect others, cloud 
communication 

Tactical group plan 
assigned, 
compensates for 
failures 

Onboard trajectory 
planning, optimize 
for current condition 

Avoids collisions 

4 Fault-adaptive 
vehicle 

Deliberate state 
awareness, 
communication with 
ground 

Tactical plan 
assigned, 
compensates for 
control failures 

Onboard trajectory 
planning, self-
manage resources 

Maintains medium 
levels of separation 

3 Scripted response 
to failures 

Health/status 
sensors, history, and 
models 

Real-time health 
diagnosis, adaptive 
inner-loop control 

Evaluates status for 
required mission; 
safe mode if needed 

Accomplishes 
tactical plan with 
assistance from 
operator 

2 Full automation 
for nominal 
operations 

Health/status 
sensors 

Real-time health 
monitoring, off-
board replanning 

Executes preloaded 
sequence or upload 
new sequence 

Executes original 
plan or new plan 

1 Limited 
automation 

Pre-loaded mission 
plan, spacecraft 
control, navigation 
sensing 

Pre- and post-flight 
BIT 

No deviation from 
pre-planned mission 

Executes pre-
planned mission 
sequence 

0 Remotely-
controlled 

Traditional mission 
control 

Downlinks data, 
responds to 
uplinked 
commands 

No onboard decisions Acts as commanded 

 

Table 1 Autonomy Levels Mapped to Autonomy Functions for Space Missions 
 

 

Future missions, such as for heliophysics, or lunar mobility/habitat will likely have a multi-craft architecture. 

Table 1 can help in the selection, and tuning, of portions of autonomous functionalities.  However, a simple 

smorgasbord-like selection could create a system with an unsustainable or a lopsided structure, and hence 

misidentify its behavior, utility, and outcomes.  

 

 

 

II. Identifying and Utilizing Leverage Points of a System 

Systems Thinking offers a way to map a system so that all stakeholders can see a system, agree on its current 

state, understand how its variables are linked and how its delays propagate. It facilitates a systemic inquiry into the 

underlying structure that can impact the system’s performance.  Systems thinking maps are a visual representation of 

our mental model of the dynamics present in the system. 



The core components of system maps are reinforcing and balancing causal loops.  Reinforcing loops are a series 

of links that amplify each other in a self-reinforcing process. They may exhibit patterns of runaway growth or 

decline.  Balancing loops are self-correcting processes. They may exhibit patterns of oscillation. Implicit in every 

balancing loop is a goal state that the system is trying to maintain. 

System Archetypes are configurations of reinforcing and balancing loops that determine the system’s behavior.  

There are intended and unintended consequences to every action. Archetypes help categorize and understand various 

interconnections, interplay, and relationships between elements in a system. 

 

 

 
 

Fig. 1 Systems Thinking: the Problem Archetype (left) and the Solution Archetype (right). 

 

Eric Wolstenholme [1] condenses system archetypes down to a more understandable core set of totally generic 

archetypes, consisting of the four ways of ordering a pair of reinforcing and balancing feedback loops. At the meta 

level, for every ‘‘problem’’ archetype he identifies a closed-loop ‘‘solution’’ archetype (Fig. 1).  

Donella Meadows’ influential article, Leverage Points: Places to Intervene in a System [2], was penned during a 

discussion of global trade treaties. The article identifies levers that can influence the outcome of a system.  These are 

points of high leverage where a small change can have a large impact.  

I map these leverage points to succinctly describe many aspects of defining, developing, and operating a 

spacecraft Fault Management (FM) system. The Top 12 Levers in Fault Management (in increasing order of 

effectiveness) are: 

A) Select Parameters 

B) Architect Buffers 

C) Leverage Redundancy 

D) Understand Lengths of Delays 

E) Choose the Right Level of Response for Fault Management 

F) Ride the Implementation Wave 

G) Visualize Information Flow 

H) Levy Requirements, Know Constraints 

I) Refine the Wheel (but don’t re-invent it) 

J) Set the Goals of Fault Management 

K) Acknowledge the Paradigm 

L) Transcend the Paradigm 

 



III. Leverage Points in the LADEE Fault Management System 

The Lunar Atmosphere and Dust Environment Explorer (LADEE) spacecraft is a small orbiter, category II, 

enhanced Class D spacecraft built on a modular common bus architecture. It achieved its science goal to examine 

the structure and composition of the tenuous atmosphere of the Moon and to understand its dust distribution.  

During the design phase LADEE’s low-cost, single-string “common bus” backbone challenged the scope of its 

Fault Management system. The team relied on model-based tools to design command sequences, understand the 

consequence of an unexpected reboot, and test various strategies for ground controller intervention and override. 

This section discusses how to use Systems Thinking’s leverage points to design an FM system to enable a 

successful mission.  

A. Select Parameters 

Start with an exploration of how many state variables to monitor. These may be determined by sensor placement 

and coverage, and might be restricted by available compute cycles and memory.  Then select which state variables 

to monitor, such as spacecraft body rates, propellant tank pressure, subsystem temperature, bus voltage. 

Set thresholds and tune them. Set upper and lower bounds for at least two limit bands for each variable: red 

limits and yellow limits. These may be set by Subsystem Designers or Mission Operators, based on prior experience, 

or may be based on vendor recommendations. Setting sampling rates for onboard use (based on available storage) 

and for downlink (constrained by packet size). 

B. Architect Buffers 

In systems there are items that you can track, count, or measure at any point in time. These are referred to as 

levels or accumulations. These are affected by repeated behaviors or actions which result in inflows, and outflows. 

Assess the FM data flow: will it be like a lake or like a river? Do consider using the stabilizing effect of buffers. 

Be sure to select right-sized buffering. If a buffer is too big, the system becomes inflexible. If too small, the system 

gets starved. 

It is useful to identify and understand trade-offs between desired “ilities” of your architecture.  Examples of such 

attributes, alphabetically arranged, are: 

Accessibility; Availability 

Capacity; Certifiability; Compatibility 

Dependability 

Effectiveness; Efficiency 

Maintainability; Modifiability 

Operability 

Portability 

Quality 

Recoverability; Reliability; Resilience; Response time; Reusability; Robustness 

Safety; Scalability; Security; Stability; Supportability 

Testability; Transparency; Trustability 

Usability 

Versatility 

C. Leverage Redundancy 

 Some spacecraft missions have the luxury of multiple redundant subsystems. A backup can be deployed if 

the primary subsystem, or a component, fails. For instance the fault protection on the Cassini mission [7] had to be 

robust so that no credible single point failure prevents attainment of the objectives, or results in a significantly 

degraded mission. Exemptions (Fig. 2) were granted for items whose failure probability was low due to the presence 

of large design margins. Adequate physical redundancy was provided with four reaction wheels for 3-axis control, 

three RTGs, and two main engines. 

For tighter mass budgets, such as on LADEE, the engineer must leverage dissimilar functional redundancies. 

Identify alternate-use options, and identify all single point failures. Design the layout to match the redundancy. For 

instance, select whether to use a single, full-length harness or to use a split harness to connect the subsystems. 

 Estimate how many spares to create and store – for example the Lunar Reconnaissance Orbiter (LRO) [3] set 

included spare Transponder, Diplexers, Band Reject Filter, 6-dB Couplers, RF Transfer Switches. 

 

 



SPF# Cassini Single Point Failures (Exemption List) 

1 Loss of a Radioisotope Thermoelectric Generator 

2 Loss of 1 High Gain Antenna (HGA), or either Low Gain Antenna (LGA 1 , LGA 2) inside 1.5 AU 

3 Leakage or bursting of a propulsion module tank (pressurant tank, main engine oxidizer tank, main engine fuel tank, thruster) 

4 External leakage or bursting of propulsion module fluid or pressurant lines and fittings… 

5 Structure (Spacecraft adapter, orbiter, or Probe) 

6 Spacecraft separation band (retention / release) 

7 Thermal blankets, surfaces, and shields (spacecraft and probe) 

8 Spacecraft cabling short 

9 Selected command and data errors 

10 Main engine combustion chamber (catastrophic explosion) 

11 Passive radio frequency equipment 

12 Micrometeoroid shielding (inherent or specific) 

13 Power interruption greater than 37 milliseconds 

14-18 Probe adapter structures, Probe structure, spin-up and release mechanisms 

Fig. 2 Exempted Single-Point Failures for Cassini. 

D. Understand Lengths of Delays 

All systems have delays in them.  Delays are the “no feedback” zones of a system. To handle the delay of 

propagation of physical effects in a system use the “persistence” parameter of a state variable to determine whether 

it has crossed a pre-defined threshold limit.  This helps deal with sensor noise as well as with the effect propagation 

time. Relate this to sampling rate, and trade against threshold limits. Use timid or bold limits based on risk tolerance. 

Delays are accounted for by “wait” times, after power on, before using a component, or for a maneuver to 

complete (Fig. 3). 

 

 
Fig. 3  Representative Wait Times in a Lunar Mission 



E. Choose the Right Level of Response for Fault Management 

 

It is acceptable to not design automated responses to all failure conditions – sometimes “no response” is the right 

response for very low probability or very low severity failures.  Most spacecraft, however, at least downlink simple 

telemetry to let the ground operator know the state of the spacecraft. This downlinked data contains measurements, 

status flags, or incrementing counters.  The next level of automated response is to raise an event to notify operators. 

A common strategy for spacecraft fault management is to execute an automated command to go to Safe Mode. 

As discussed in [5] spacecraft modes encapsulate many operational intentions. They define the feedback and 

actuators to control the spacecraft, and they provide a single command to switch between these mechanisms. In any 

particular mode (Fig. 4) the spacecraft can, in a pre-set way, automatically turn components on/off.  Mode 

definitions, transition restrictions, and transition pathways often lead to lively debates between different design 

teams. For instance, there can be multiple options for the path to Safe Mode: with or without processor reboot. 

 

 
 

Fig. 4  Commanded (black) or Autonomous (red) Mode Transitions on LADEE 
  

Further levels of corrective actions include sending a direct command from ground to recover from Safe 

Mode. Several missions have had to upload a new command sequence from the ground.  If that does not resolve 

the issue, the next level of remediation involves uploading a new flight software load. 

F. Ride the Implementation Wave 

 Leverage existing flight software (FSW) modules for FM functionality (Fig. 5). Leverage FSW for FM 

“failure injection” capability. Strive to “test like you fly” as best possible without risk of damaging the spacecraft by 

“injecting failures” into a software or a hardware simulator rather than the actual spacecraft. Address telemetry 

needs and command capabilities for Mission Operators, and data needs for Science Operations. 

 

 
Fig. 5  LADEE Flight Software Architecture 



G. Visualize Information Flow 

Practice FM with Mission-Operations-in-the-loop (Fig. 6), to understand the right quantity, quality, and speed of 

information that needs to flow to the human operator.  

 

 
 

Fig. 6  Identifying Information Flow for LADEE Fault Management 

H. Levy Requirements, Know Constraints 

FM levies requirements on Flight Software, and vice versa – earlier the better! Additionally, FM levies 

requirements on itself – such as “do no harm”. FM levies requirements on Mission Operations, and vice versa – 

iterate this along with first draft of Ops Concept. 

FM often levies requirements on Science Operations. This may depend on the scope of FM under the constraints 

of CPU, memory, available spacecraft resources for continued operation such as power, propellant, pressurant, 

coolant. 

An often underestimated constraint is the time available to design, implement, debug and verify FSW. 

Verification, alone, can take up to an hour per requirement on a medium-sized mission.  This can be reduced 

through model-based development of software. 

I. Refine the Wheel (but don’t re-invent it) 

Leverage lessons learned from similar NASA missions to design out the known issues and to be better informed 

about responding to spacecraft failures. For instance, the Kepler mission underwent multiple safing events, from 

false positives due to sensor noise (reference). Curiosity (Mars Science Laboratory) had unexpected computer resets, 

for which the underlying cause was a processor bug. Likewise, LRO had an operating system bug (two differing 

implementations of fmod function). 

Capture this process knowledge to help future missions. For instance the Cassini fault protection had to be 

redesigned [8] from its original form [7]. One month after Cassini’s launch when the propellant tanks were 

pressurized for the first time, the prime regulator was leaking at a rate significant enough to require a considerable 

change. This occurrence of new failure modes required design changes in thresholding algorithms. 

Be aware that heritage can be a double-edged sword. Seek consensus on what to conserve and retain from a 

previous system. 

J. Set the Goals of Fault Management 

Implement an operational capability to detect and respond to conditions that interfere with nominal operations. 

Maintain a capability to continue to operate through critical events. That is, develop a capability to “fail 

operational”. 

Provide a common context for subsystem designers to verbalize “what can go wrong”, especially at interfaces, 

and during mode- or phase-transitions [5]. Coordinate, design, and implement Fault Management by leveraging, 

where possible, existing Flight Software modules. 



K. Acknowledge the Paradigm 

A paradigm is a set of beliefs, cultivated over time, about how a mission or a project should be designed and 

implemented. A key factor is a project’s risk posture based on mission risk classification.   

Encourage Project commitment to the importance of early involvement of fault management. Start in the 

formulation phase (Phase A) to dampen the ubiquitous “workload bump” in the implementation phase (Phase D). 

Strive for a buy-in from subsystems – this is hard!  Many subsystem leads are certain that they have a perfect 

system.  Their paradigm is to design the nominal system first. And they may see fault management capability simply 

as some additional software that can be folded in later.  

L. Transcend the Paradigm 

Earn the buy-in from subsystem leads through active listening. Start with a scenario-based discussion of 

potential failures in the subsystems, assess their likelihood and severity, and then flow these scenarios back into 

detailed requirements. The sooner a subsystem’s failure handling requirements are implemented in software, the 

sooner the subsystem team gets to “try it out” in simulation – including a failure simulation. 

Establish “certifiable trust” in system performance that cannot be anticipated from behavior of individual 

subsystems. This is especially valuable for responding to subtle failures during critical events [4]. 

As system complexity grows acknowledge that fault management may not scale elegantly. There may be a need 

to develop a flexible, autonomous control architecture with goal-driven adaptability to operate under all conditions. 

IV. Conclusion 

This is an initial exploration of a Systems Thinking perspective on Fault Management.  The next effort needs to 

focus on system archetypes that help, or hinder, the development of effective fault management for NASA missions.  

Particularly, as more autonomy is introduced into the space and air vehicles of tomorrow, there is going to be a 

stronger need to understand old paradigms and their constraints. To infuse new ways of implementing bolder 

missions there needs to be a way of understanding system archetypes and how to overcome their limitations.    
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